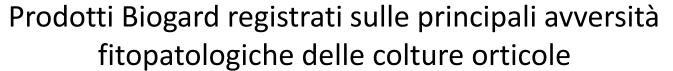


Mezzi tecnici di biocontrollo per la protezione delle colture in orticoltura biologica dalle avversità fitopatologiche



Fabio Fiorentini - 31 marzo 2022

Nome formulato	Principio attivo	Principali avversità controllate	Colture registrate	Note
Amylo-X	Bacillus amyloliquefaciens Ceppo D747	Sclerotinia Botrite Batteriosi Peronospora Oidio	Cucurbitacee Solanacee Lattuga e insalate	Applicazioni fogliari Max 6 trt./stagione
Amylo-X LC	Bacillus amyloliquefaciens Ceppo D747	Pythium Rhizoctonia Fusarium Phoma Sclerotinia	Solanacee Cucurbitacee Lattughe e insalate	Applicazioni al terreno in fertirrigazione Max 8 trt./stagione
AQ10 WG	Ampelomyces quisqualis Isolato M-10	Oidio	Cucurbitacee Solanacee	-
Vitikappa	Bicarbonato di potassio	Oidio	Solanacee Cicoria, endivia, valerianella, lattuga, prezzemolo, erbe fresche, umbellifere, leguminose.	Su erbe fresche ha anche la botrite
Heliocuivre	Idrossido di rame su base terpenica	Peronopsora Septoria Alternaria Batteriosi Cercospora Antracnosi	Pomodoro Fagiolo, pisello, cavolfiore, broccolo, insalte, cardo, carciofo, rapa, spinacio, sedano, finocchio, melanzana, cetriolo	
Heliosoufre S	Zolfo su base terpenica	Oidio	Patata, cucurbitacee, lattuga, indivia, pisello, sedano, zucchino, ecc	È registrato su pomodoro anche su <i>Aculops lycopersici</i>

Si rimanda alle specifiche etichette per maggiori dettagli

Amylo-X:

Le formulazioni

Amylo-X WG

WG Granuli idrodispersibili

Applicazioni fogliari

LMR e PHI non richiesti

Contenuto p.a.: 25% p/p (5*10¹⁰ UFC/g)

Amylo-X LC

LC Formulazione liquida

Applicazioni al terreno

LMR e PHI non richiesti

Contenuto p.a.: 5% p/p (1*10¹⁰ UFC/g)

Perché scegliere Amylo-X LC per le applicazioni al terreno e Amylo-X WG per le applicazioni fogliari ??

Amylo-X LC:

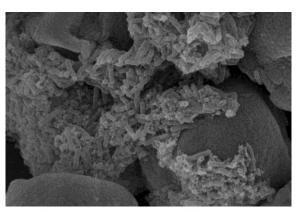
Applicazioni fogliari (WG)

- Formulato che contiene solo spore durevoli prodotto tramite il processo di **Spray-drying.**
- Durante il processo di essicazione nello spray-dryer (esposizione ad alte temperature per breve tempo), enzimi e altre molecole metabolicamente attive vengono degradate e cellule vegetative vengono uccise.
- Tecnico costituito esclusivamente da spore di elevata qualità, ideale per ottimizzare persistenza di azione e tolleranza ad agenti atmosferici.

Applicazioni al terreno (LC)

- Ottenuto dal brodo di fermentazione purificato e concentrato.
- Contiene meno spore del WG, ma anche cellule vegetative (attive immediatamente), enzimi e altre molecole metabolicamente attive.
- Minore persistenza di azione e tolleranza ad agenti atmosferici.
- Tecnico ideale per garantire una immediata formazione del biofilm e per ottimizzare l'azione di induzione di resistenza e promozione di crescita delle piante.

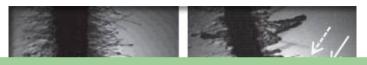
Amylo-X



Le formulazioni – modalità d'azione

Applicazioni fogliari (WG)

- Competizione per fonti nutritive e spazio
- Rilascio all'esterno sostanze (lipopeptidi) in grado di inibire la crescita dei patogeni
- Induzione di resistenza


Necessità di ottimale persistenza di azione e di tolleranza ad agenti atmosferici

Applicazioni al terreno (LC)

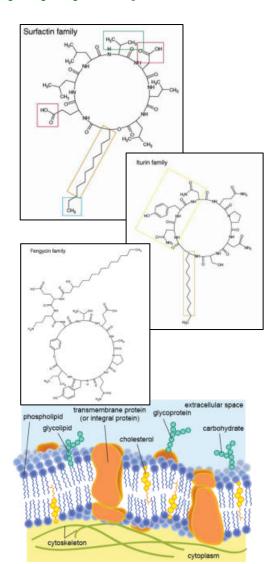
- Formazione di biofilm su radici
- Rilascio di **lipopeptidi** (azione diretta contro patogeni e formazione biofilm)
- Induzione di resistenza e promozione di crescita delle piante

Necessità di formazione immediata di biofilm che si accresce assieme a radici

Biofilm: comunità strutturata di cellule batteriche racchiuse in una matrice polimerica autoprodotta ed adesa ad una superficie inerte o vivente.

Non trattato

Trattato


Amylo-X® e Amylo-X LC – modo di azione (lipopeptidi)

I lipopeptidi prodotti da ceppi di *Bacillus* appartengono a 3 famiglie:

- Surfactine (rottura della membrana, battericidi)
- <u>Iturine</u> (squilibrio osmotico, fungicidi)
- Fengycine (alterazione fluidità membrana, fungicidi)

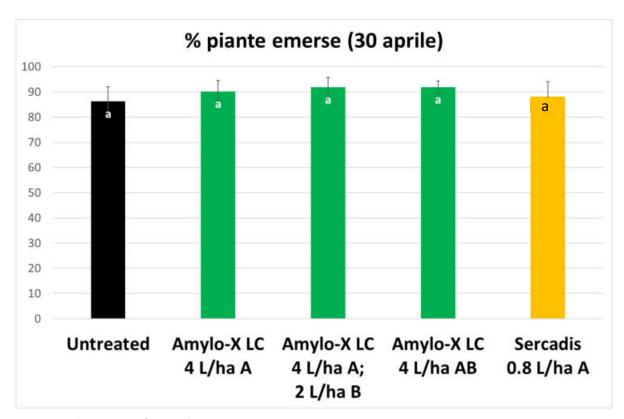
In generale i lipopeptidi:

- agiscono in modo sinergico
- all'interno di ogni famiglia di lipopeptidi, alcuni omologhi strutturali sembrano essere più attivi di altri
- l'attività antimicrobica dipende dalla specie di patogeno presente (modulazione nella produzione di lipopeptidi), quindi ...

Amylo-X® e Amylo-X LC – come e quando applicarli

- L'applicazione deve essere sempre preventive all'evento infettante. L'ideale sarebbe intervenire almeno 24 ore prima.
- Per le applicazioni al terreno iniziare fin dalla semina/trapianto.
- Possono essere utilizzati da soli o in strategia. In questo caso consultare le eventuali incompatibilità.

Recenti sperimentazioni a supporto



Amylo-X LC:

CBCGROUP

Rhizoctonia solani su patata

Inoculo artificiale

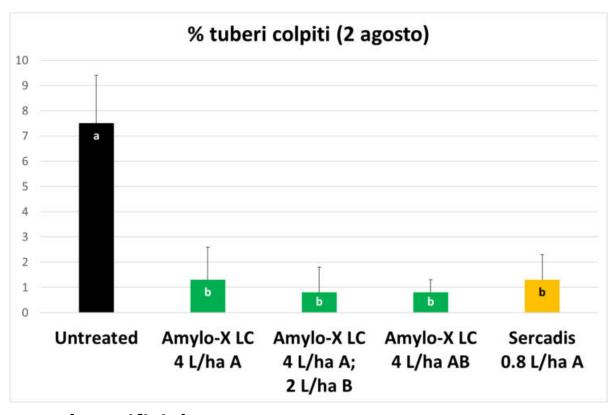
Castel S. Pietro Terme (BO), IT 2021.

Patata cv Malou.

Interventi: A=2-apr, alla semina. B=3-mag, 31 gg dopo A per fertirrigazione

Volume di bagnatura: 500 L/ha in A, 10.000 L/ha in B.

Rilievi: % piante emerse/8 m fila binata a BBCH 23 (17-mag), % tuberi infetti/100 tuberi alla raccolta (2 agosto).


Sercadis: 300 g/L fluxapyroxad.

Amylo-X LC:

Rhizoctonia solani su patata (2)

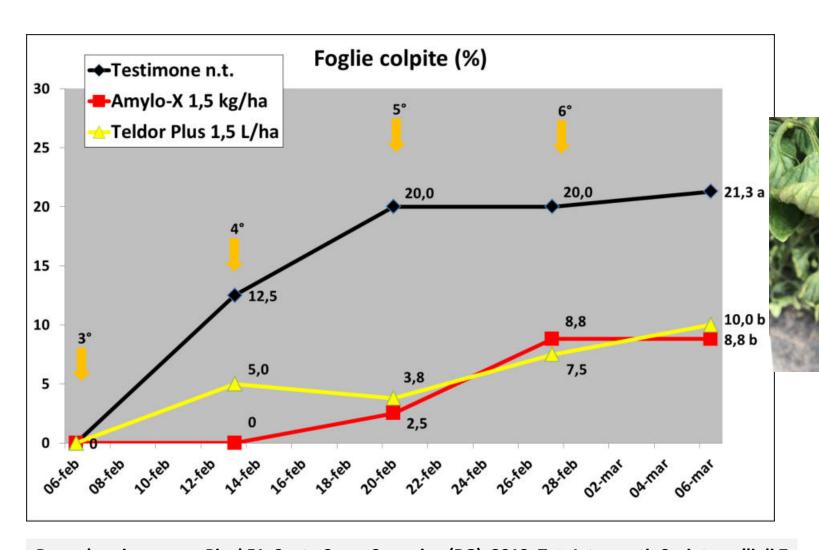
Inoculo artificiale

Castel S. Pietro Terme (BO), IT 2021.

Patata cv Malou.

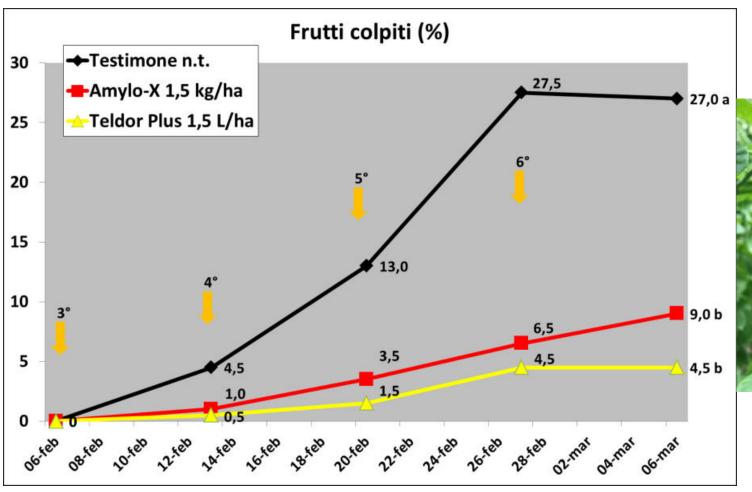
Interventi: A=2-apr, alla semina. B=3-mag, 31 gg dopo A per fertirrigazione

Volume di bagnatura: 500 L/ha in A, 10.000 L/ha in B.


Rilievi: % piante emerse/8 m fila binata a BBCH 23 (17-mag), % tuberi infetti/100 tuberi alla raccolta (2 agosto).

Sercadis: 300 g/L fluxapyroxad.

Amylo-X: efficacia contro botrite su pomodoro



Pomodoro in serra cv Pixel F1. Santa Croce Camerina (RG), 2019. Tot. Interventi: 6 a intervalli di 7 gg ca. per Amylo-X, 3 a intervalli di 14 gg per Teldor Plus. A=Jan-23-2019 (BBCH 72), B=7 DAA, C=7 DAB, D=4 DAC, E=8 DAD, F=7 DAE. Volume di bagnatura: 1000 L/ha. Rilievi: su foglie e frutti

Amylo-X: efficacia contro botrite su pomodoro

Pomodoro in serra cv Pixel F1. Santa Croce Camerina (RG), 2019. Tot. Interventi: 6 a intervalli di 7 gg ca. per Amylo-X, 3 a intervalli di 14 gg per Teldor Plus. A=Jan-23-2019 (BBCH 72), B=7 DAA, C=7 DAB, D=4 DAC, E=8 DAD, F=7 DAE. Volume di bagnatura: 1000 L/ha. Rilievi: su foglie e frutti

Amylo-X[®] & Amylo-X LC – vantaggi

- fungicidi e battericidi ad ampio spettro di azione
- modo di azione multiplo: adatto all'inserimento in strategie di gestione della resistenza agli agrofarmaci, soprattutto a quelli ad azione mono-sito
- nessun tempo di carenza (0 giorni), nessun LMR: consente di ridurre il rischio di residui indesiderati sulla produzione
- miscibili in botte con la maggior parte degli agrofarmaci comunemente impiegati per la protezione delle colture (fungicidi rameici inclusi)
- adatto (LC) all'impiego in combinazione con prodotti a base di Trichoderma sp. (incremento di efficacia) e micorrize
- sicuri per l'uomo e per l'ambiente
- ammessi in agricoltura biologica e adatti all'inserimento in qualsiasi strategia di difesa, ma soprattutto in quelle di Produzione Integrata

AQ 10 WG

Registrazione N° 11786 del 20.01.2004

Principio attivo: Ampelomyces quisqualis isolato M-10

Formulazione: WG

Composizione: $5 \times 10^9 \text{ spore/g } (58\%)$

Tempo di carenza: 0 giorni

Classificazione CLP: non classificato

LMR: non richiesto

Campi e dosi di impiego:

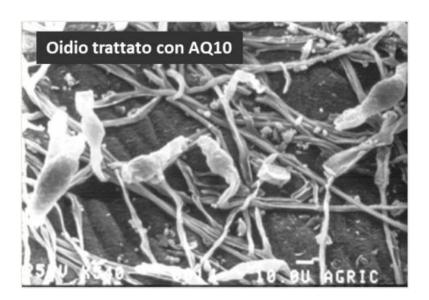
vite da vino, Solanacee, Cucurbitacee, fragola, rosa: 35 – 70 g/ha

uva da tavola: 50-70 g/ha

Conservazione:

in frigorifero (4-5°C): 2 anni

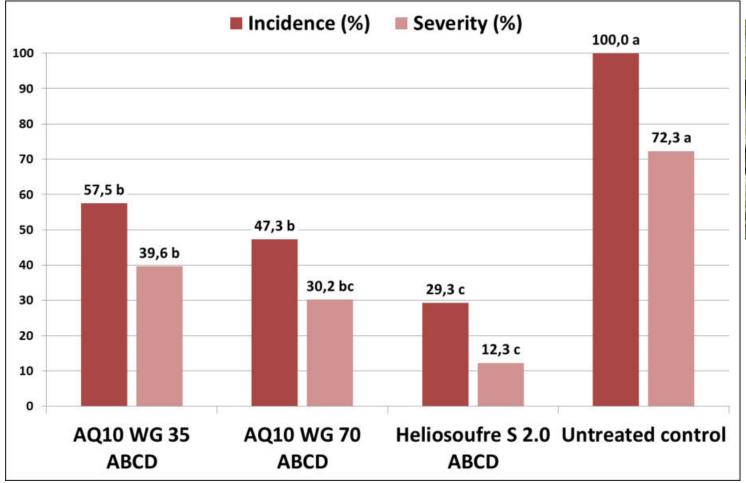
in luogo fresco e asciutto (ca. 20°C): 1 anno



A. quisqualis isolato M-10 è stato isolato da Catha edulis in Israele nel 1984. Dal 2005 il principio attivo è inserito nell'Allegato I, Dir. 91/414/EEC.

A. quisqualis M-10 vive a spese di specie di oidio dell'ordine Erysiphales. Reprime la sporulazione del micelio dell'ospite e uccide tutte le cellule parassitizzate, causandone una graduale degenerazione senza alcuna produzione di tossine.

L'antagonista parassitizza sia il micelio presente a livello fogliare e del grappolo sia le forme svernanti dell'oidio (micelio e cleistoteci) con conseguente abbassamento dell'inoculo per l'annata successiva.



Peperone oidio

Santa Croce Camerina, Ragusa (Italy), 2014 Coltura: peperone in serra cv Pompeo F1

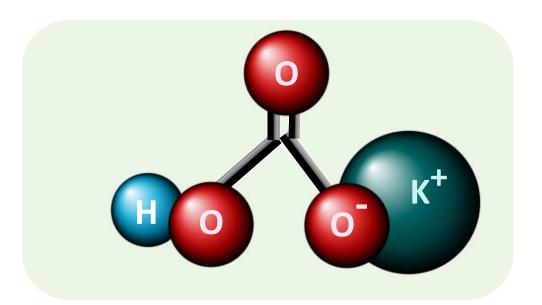
Timing: A= ai primi sintomi (7/8); B=7 DAA*; C=8 DAB, D=7 DAC. Volume di bagnatura: 1000 L/ha

Dosaggi: AQ 10 a 35 e 70 g/ha, Heliosoufre S (51.1% zolfo) a 2.0 L/ha.

Rilievo finale: 7 DAD (5/9) Incidenza (% foglie colpite) e Severità (% superficie fogliare colpita)

* DAX=days after application X.

AQ 10 WG – vantaggi


- nessun LMR e nessun tempo di carenza (può essere impiegato anche in preraccolta con riduzione del rischio di residui indesiderati nella produzione)
- ideale per l'inserimento in Programmi di Difesa Integrata (applicazioni contro organi svernanti per ridurre la pressione di oidio nell'annata successiva)
- adatto all'inserimento in Strategie di gestione della resistenza (modo di azione diverso da quello dei fungicidi di sintesi; può aiutare a ridurre il rischio di sviluppo di ceppi di oidio resistenti ai fungicidi di sintesi)
- non è fitotossico
- agisce a temperature più basse dello zolfo (attivo già a 12°C)
- non interferisce con i processi di fermentazione e vinificazione
- non altera gli aromi
- innocuo per insetti utili e acari fitoseidi, sicuro per uomo e ambiente
- ammesso in Agricoltura biologica

Vitikappa®: caratteristiche prodotto

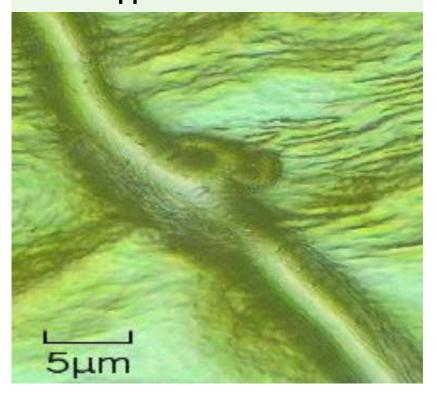
- Sostanza attiva: 995 g/kg bicarbonato di potassio (KHCO₃)
- Formulazione: polvere solubile (SP)
- Classificazione CLP: non classificato
- Tempo di carenza: 0 giorni

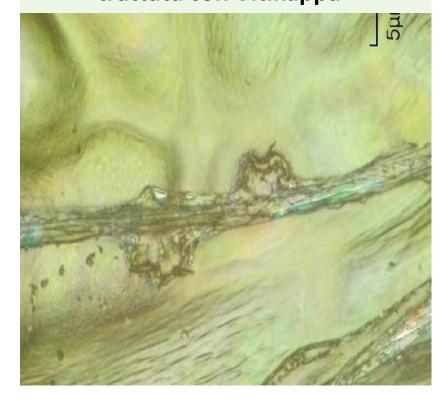
Vitikappa®: modo di azione

Vitikappa® è un fungicida da contatto che agisce attraverso una combinazione di fattori:

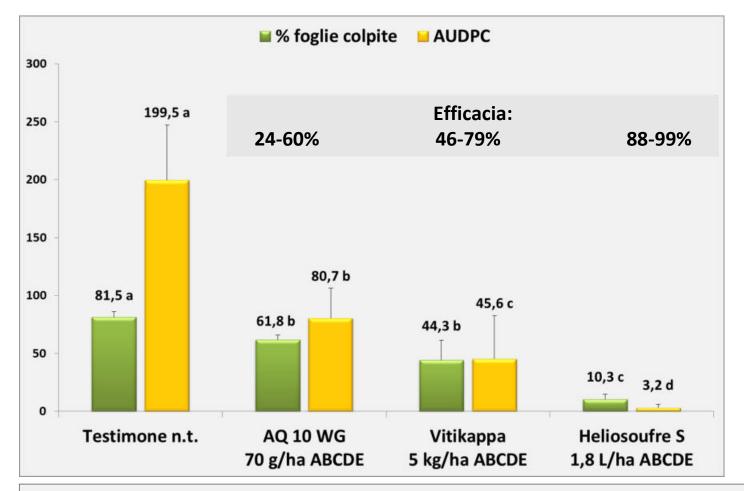
- innalzamento del pH
- alterazione della pressione osmotica delle cellule fungine
- azione specifica dello ione bicarbonato: alterazione della permeabilità e
 perforazione della membrana cellulare (con conseguente incremento dell'efficacia
 dello zolfo e dei prodotti di copertura applicati in miscela)

Assieme determinano:


- riduzione vitalità e germinazione delle spore
- rottura ed essiccazione di ife e di spore in fase di germinazione fino a
- collasso e morte di ife, micelio e spore


Vitikappa®: modo di azione

Ifa di oidio sana con appressorio non trattata


Ifa di oidio essiccata trattata con Vitikappa®

Vitikappa®: oidio su melone 2017 (serra)

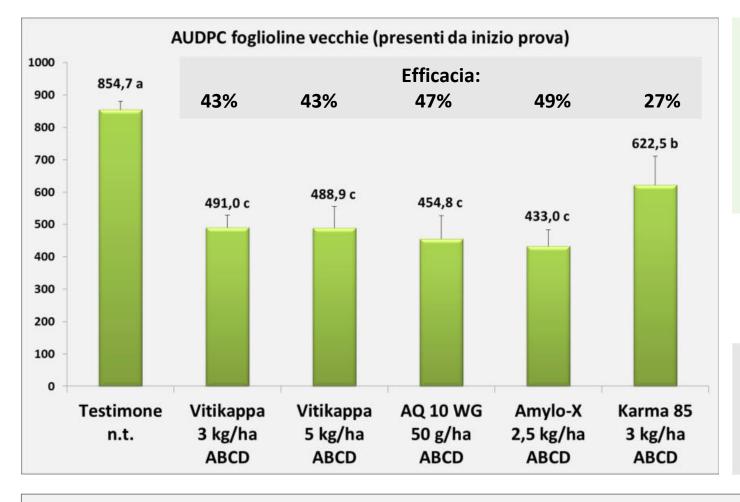
AUDPC Area Under Disease Progress Curve

Esprime la progressione della gravità della malattia (% sup. fogliare colpita) nel tempo

Pressione molto alta:
Primi sintomi 15 giu
(6 DAB; al terzo
intervento)

Località: Cento (FE), Italia, 2017 (GZ Srl). Coltura: melone in pieno campo cv Giolli F60. Trapianto: 15 mag

Epoca interventi: A=preventivo – 6-8 foglie vere (1 giu); B=8 DAA (9 giu); C=6 DAB (15 giu); D=7 DAC (22 giu), E=7 DAD (29 giu).


Volume di bagnatura: 600 L/ha. Standard: Heliosoufre S (700 g/L zolfo)

Rilievi riportati: 7 gg dopo D (6 lug) su 100 foglie per rep.

Vitikappa®: oidio su pomodoro 2017

AUDPC Area Under Disease Progress Curve

Esprime la progressione della gravità della malattia (% sup. fogliare colpita) nel tempo

Pressione molto elevata:

87-97% di foglioline vecchie con sintomi in tutte le tesi

Località: Scicli (RA), Italia, 2017 (Promovert). Coltura: pomodoro in serra cv DRW7723. Trapianto: 28 ago

Epoca interventi: A=comparsa sintomi - fioritura (6 ott); B=6 DAA (12 ott); C=5 DAB (17 ott); D=9 DAC (26 mag)

Volume di bagnatura: 1000 L/ha.

Standard: Karma 85 (85% bicarbonato di potassio)

Rilievi riportati: 11 gg dopo D (6 nov) su 50 foglioline vecchie (presenti da inizio prova)

Vitikappa®: caratteristiche

Vantaggi:

- Nessun tempo di carenza, nessun LMR
- Classificazione CLP: non classificato
- Ottima solubilità in acqua
- Minore rischio di fitotossicità rispetto a prodotti con p.a. uguale/simile
- Ideale per l'inserimento in strategie di difesa (sia biologica sia integrata) con altri prodotti (in miscela e/o alternanza)

Heliosoufre S[®]: il prodotto

(Registrazione N° 11102 del 29 novembre 2001)

Principio attivo: Zolfo puro

Formulazione: Sospensione Concentrata (SC)

Composizione: 51 % di zolfo (= 700 g/L)

Campi di impiego: frutticoltura, viticoltura, orticoltura, colture estensive

Dose di impiego: orticoltura 1,5-3 L/ha

Tempo di carenza: 3 gg

Conservazione: in luogo fresco e asciutto

Classificazione CLP: Pericolo

Heliocuivre: il prodotto

(Registrazione N° 12170 del 16 aprile 2004)

Sostanza attiva: Rame metallo (come idrossido di Cu)

Formulazione: Sospensione concentrata (SC)

Composizione: 26,2 g su 100 g (=400 g/L) di rame metallo

Campi di impiego: frutticoltura, orticoltura, floreali,

ornamentali, ecc.

Dose di impiego: 150 – 250 mL/100 L (max. 350 solo contro

cancri del legno), senza dosaggio min.-max. per ha

Tempo di carenza: 20 gg

Conservazione: in luogo fresco e asciutto

Classificazione CLP: Pericolo

PERICOLO

Formulazione a base terpenica

Formulazione a base terpenica - Vantaggi

- 1. Ottimizzazione dimensione gocce
- 2. Migliore distribuzione del prodotto sulla vegetazione
- 3. Incremento della copertura della vegetazione trattata
- 4. Incremento dell'efficacia del zolfo / rame distribuito
- 5. Migliore adesività e maggiore resistenza al dilavamento
- 6. Attività anti-sporulante (Heliocuivre)
- 7. Riduzione dei rischi di fitotossicità

Grazie per l'attenzione

- Fabio Fiorentini
- Area Ricerca & Sviluppo Biogard
- E-mail: <u>tecnicobiogard@cbceurope.it</u>